SIDDHARTHA INSTITUTE OF SCIENCE &TECHNOLOGY:: PUTTUR DEPARTMENT OF MATHEMATICS

DISCRETE MATHEMATICS

OUESTION BANK

<u>UNIT-1</u> <u>Mathematical Logic</u>

1.	a) Define statement and atomic statement.	[2M]
	b) Define tautology with examples.	[2M]
	c) Write the following statement in symbolic form, If either Jerry takes calculus or Ken	
t	akes sociology, then Larry will take English.	[2M]
	d) Write the negation of the statement "Today is Friday" and express this in simple Eng	lish.[2M]
	e) Define Universal Quantifier with example.	[2M]
2.	a) Construct the truth table for the following formula $\neg(\neg P \lor \neg Q)$	[5M]
	b) Construct the truth table to Show that $\neg P \land (Q \land P)$ is a contradiction.	[5M]
3.	a)Define NAND,NOR & XOR and give their truth tables.	[5M]
	b) Define Exclusive & Inclusive disjunctions with an examples.	[5M]
4.	a)Show that $S \lor R$ is a tautologically implied by $(P \lor Q) \land (P \to R) \land (Q \to S)$	[5M]
	b) Show that $(P \rightarrow Q) \land ((Q \rightarrow R) \Rightarrow (P \rightarrow Q))$	[5M]
5.	a) What is principle disjunctive normal form? Obtain the PDNF of	
	$P \to ((P \to Q) \land \neg (\neg Q \lor \neg P))$	[5M]
	b) What is principle conjunctive normal form? Obtain the PCNF of	
	$(\neg P \to R) \land (Q \leftrightarrow P)$	[5M]
6.	a)Prove that $(\exists x)(P(x) \land Q(x)) \Rightarrow (\exists x)P(x) \land (\exists x)Q(x)$	[5M]
	b)Show that $(\forall x)(P(x) \rightarrow Q(x)) \land (\forall x)(Q(x) \rightarrow R(x)) \Rightarrow (\forall x)(P(x) \rightarrow R(x))$	[5M]
7.	a)Define Quantifiers and types of Quantifiers with examples.	[5M]
	b)Show that $(\exists x) M(x)$ follows logically from the premises	
	$(\forall x)(H(x) \rightarrow M(x)) \text{ and } (\exists x)H(x)$	[5M]
8.	a) Use indirect method of proof to prove that $(\forall x)(P(x) \lor Q(x)) \Rightarrow (\forall x)P(x) \lor (\exists x)Q(x)$	5M]
	b) Define Maxterms & Minterms of P & Q & give their truth tables	[5M]

	Question Bank	2020
9. a) Show that S is a valid conclusion from the premises $p \rightarrow q, p \rightarrow r, \neg (q \land r) and (s \lor p)$	[5M]
b) Obtain PCNF of $A = (p \land q) \lor (\neg p \land q) \lor (q \land r)$ by construct	ing PDNF [5M]
10. a) Show that $P \lor Q$ follows form P	[5M]
b) Show that $\Rightarrow (\neg Q \land (P \rightarrow Q)) \rightarrow \neg P$	[5M]

Question Bank	x 20 2	20		
<u>UNIT-2</u>				
Relations & Algebraic Structures				
1. a) Define Poset and Hasse diagram.	[2M]			
b) Let $X = \{1,2,3,4\}$ and $R = \{(x,y) / x > y\}$ give its Matrix form.	[2M]			
c) If $f: R \to R \exists f(x) = \frac{2x+3}{5}$, find $f^{-1}(x)$	[2M]			
d) Define semi group with example.	[2M]			
e) Define homomorphism.	[2M]			
2. a) If R be a relation in the set of integers Z defined by $R = \{(x, y) : x \in Z, y \in Z, (x - y) \text{ is diverses} \}$	sible by 6	} then		
prove that R is an equivalence relation. [5M]				
b) Let A= { 1,2,3,4,5,6,7 } .determine a relation R on A by $aRb \Leftrightarrow 3 \text{ divides}(a-b)$,				
show that R is an equivalence relation ?	[5M]			
3. Let A = { 1,2,3,4 } and let R = { (1,1),(1,2),(2,1),(2,2), (3,4), (4,3), (3,3), (4,4) }				
be an equivalence relation on R? determine A/R.				
4. Let A be a given finite set and P(A) its power set . let \subseteq be the inclusion relation on				
elements of P(A) .Draw the Hass diagram of (P(A), \subseteq) for i) A = { a } ii) A = { a ,b}				
iii) $A = \{a,b,c\}$ iv) $A = \{a,b,c,d\}$.	[10M]			
5. a) Define a binary relation. Give an example. Let R be the relation from the set $A = \{1, 2\}$	3,4}			
on itself and defined by $R = \{ (1, 1), (1, 3), (3, 3), (4, 4) \}$ the find the matrix of R				
draw the graph of R.		[5M]		
b) verify () () for all are bijective from		[5M]		
6.a) Let , , , then prove that () ()	[5M]			
b) If such that $f(x, y) = 2x + 1$ and $g: R \to R$ such that $g(x) = \frac{x}{3}$				
then verify that()	[5M]			
7.a) Prove that the set Z of all integers with the binary operation $*$,				
defined as $a*b=a+b+1, \forall a,b \in Z$ is an abelian group.	[5M]			
b) Define and give an examples for group, semigroup, subgroup &abelian group.		[5M]		

Let $S = \{a, b, c\}$ and let * denotes a binary operation on "S" is given below also let $P = \{1, 2, 3\}$ and addition be a binary operation on "p" is given below. show that $(S, *) \& (P, \oplus)$ are isomorphic.[5M]

(+)	1	2	3	*	A	B	C
1	1	2	1	A	A	В	С
2	1	2	2	В	В	В	С
3	1	2	3	C	С	В	С

b) On the set Q of all rational number operation $*$ is defined by $a * b = a + b - ab$					
Show that this operation Q froms a commut	tative monoid.	[5M]			
9. a) Show that the set{1,2,3,4,5} is not a group under addition and multiplication modulo 6.[5M]					
b) Show that the binary operation * defined on () where	is not associative.	[5M]		
10.a)show that the set of all roots of the equation	forms a g	group under multiplication.	[5M]		

b) Explain the concepts of homomorphism and isomorphism of groups with examples [5M]

Question Bank 2020 UNIT-3 **Elementary Combinatorics** a) In how many ways 5 students can be selected from 12 students without student. [2M] b) How many different words can be formed with the letters of the word MISSISSIPPI. [2M] 12 c) Evaluate [2M] (5.3.2.2) d) Find the coefficient of x^3y^4 in the expansion of $(x + y)^7$ [2M] e) State Binomial Theorem. [2M] a) Enumerate the number of non negative integral solutions to the inequality $x_1 + x_2 + x_3 + x_4 + x_5 \le 19$.[5M] b) How many integral solutions are there to $x_1 + x_2 + x_3 + x_4 + x_5 = 20$ where each(i) $x_i \ge 2$ (ii) $x_i > 2$ [5M] 3. a) How many numbers can be formed using the digits 1, 3, 4, 5, 6, 8 and 9 if no repetitions [5M] are allowed? b) What is the co-efficient of (i) $x^3 y^7$ in $(x + y)^{10}$ (ii) $x^2 y^4$ in $(x - 2y)^6$ a) Out of 5 men and 2 women, a committee of 3 is to be formed. In how many ways [5M] if at least one woman is to be included? Can it be formed [5M] a) The question of mathematics contains two questions divided into two groups of 5 questions [5M] each. In how many ways can an examine answer six questions taking atleast two questions from each group. b) How many permutations can be formed out of the letters of word "SUNDAY"? How many of [5M] (i) Begin with S? (ii) End with Y? (iii) Begin with S & end with Y? (iv) S &Y always together? a) In how many ways can the letters of the word COMPUTER be arranged? How many of them [5M] begin with C and end with R? how many of them do not begin with C but end with R? b) Outof 9 girls and 15 boys how many different committees can be formed each consisting of 6 [5M] boys and 4 girls? a) Find the coefficient of (i) $x^3y^2z^2$ in $(2x - y + z)^9$ (ii) x^6y^3 in $(x - 3y)^9x^6y^3$ [5M] b) Find how many integers between 1 and 60 that are divisible by 2 nor by 3 and nor by 5. [5M] Also determine the number of integers divisible by 5 not by 2, not by 3. a) Out of 80 students in a class, 60 play foot ball, 53 play hockey and 35 both the games. [5M] students (i) do not play of these games? (ii) Play only hockey but not foot ball How many b) A Survey among 100 students shows that of the three ice cream flavours vanilla, chocolate, [5M] straw berry.50 students like vanilla,43 like chocolate,28 like straw berry,13 like vanilla and chocolate 11 like chocolate and straw berry, 12 like straw berry and vanilla and 5 like all of them. Find the following. 1. Chocolate but not straw berry 2. Chocolate and straw berry but not vanilla 3. Vanilla or chocolate but not straw berry a) How many different license plates are there that involve 1,2or 3 letters followed by 4 digits ? [5M] b)Find the minimum number of students in a class to be sure that 4 out of them are born on the same month.? [5M] 10. a) Applying pigeon hole principle show that of any 14 integers are selected from the set [5M] $S = \{1, 2, 3... 25\}$ there are atleast two whose seem is 26. Also write a statement that generalizes this result b) Show that if 8 people are in a room, at least two of them have birthdays that occur on the

Discrete Mathematics

1.

2.

4.

5.

6.

7.

8.

9.

these

[5M]

same day of the week.

<u>UNIT-4</u> <u>Recurrence Relation</u>

1.	a) State generating function.	[2M]
	b) Determine the coefficients of x^{15} in $x^3(1-2x)^{10}$	[2M]
	c) Define Recurrence relation.	[2M]
	d) Find order of recurrence relation $a_{r+2} - a_{r+1} = 2a_r$	[2M]
	e) Find the generating function for the sequence 1, 2, 3, 4	[2M]
2.	a) Determine the sequence generated by (i) $f(x) = 2e^x + 3x^2$ (ii) $f(x) = e^{8x} - 4e^{3x}$.	[5M]
	b) Find the sequence generated by the following generating functions	
	(i) $(2x-3)^3$ (ii) $\frac{x^4}{1-x}$	[5M]
3.	a) Solve $a_n = a_{n-1} + 2a_{n-2}$, $n > 2$ with condition the initial $a_0 = 0$, $a_1 = 1$	[5M]
	b) Solve $a_{n+2} - 5a_{n+1} + 6a_n = 2$ with condition the initial $a_0 = 1$, $a_1 = -1$	[5M]
4.	a)Solve the R.R $a_{n+2}^{n+2} - 2a_{n+1}^{n+1} + a_n = 2^n$ with initial condition $a_0 = 2, a_1 = 1$	[5M]
5.	b) Using generating function solve $a_n = 3a_{n+1} + 2$, $a_0 = 1$ a) Solve the following $y_{n+2} - y_{n+1} - 2y_n = n_2$	[5M] [5M]
	b) Solve $a_n - 5a_{n-1} + 6a_{n-2} = 1$	[5M]
6.	a) Solve the recurrence relation $a_r = a_{r-1} + a_{r-2}$ Using generating function.	[5M]
	b) Solve the recurrence relation using generating functions $a_n - 9a_{n-1} + 20a_{n-2} = 0$ f	for $n \ge 2$
	and $a_0 = -3, a_1 = -10$	[5M]
7.	a) Solve the recurrence relation $a = a + \frac{n(n+1)}{n(n+1)}$	[5M]
	ⁿ ⁿ⁻¹ <u>2</u>	L- J
	b) Solve $a_k = k(a_{k-1})^2$, $k \ge 1, a_0 = 1$	[5M]
8.	a) $a_n = 2a_{n-1} - a_{n-2}$ with initial conditions $a_1 = 1.5 \& a_2 = 3$	[5M]
0	b) $a_n = 3a_{n-1} - a_{n-2}$ with initial conditions $a_1 = -2$ & $a_2 = 4$	[5M]
9.	a) Solve $a_n - 7a_{n-1} + 10a_{n-2} = 4_n$	[5M]
	b) Solve $a_n = a_{n-1} + 2a_{n-2} n > 2$ with condition the initial $a_0 = 2$, $a_1 = 1$	[5M]
10	. a) Solve $a - 5a + 6a = 2^n$, $n > 2$ with condition the initial $a = 1$, $a = 1$.	
	Using generating functions. $0 1$	[5M]
	b) Solve $a - 4a + 4a = (n+1)^2$ given $a = 0, a = 1$	[5M]
	n $n-1$ $n-2$ $n-2$ 0 1	_ 4

<u>UNIT-5</u> <u>Graph Theory</u>

1.	a) Define Path.b) Define complete graph.c) State Eulers formula.d) State handshaking theorem.	[2M] [2M] [2M] [2M]
	e) Define Spanning Tree.	[2M]
2.	 a) Explain In degree and out degree of graph. Also explain about the adjacency matr representation of graphs. Illustrate with an example? b) Give an example of a graph that has neither an Eulerian circuit nor a Hamiltonian n(n). 	ix [5M] circuit. [5M]
3.	a)Show that the maximum number of edges in a simple graph with n vertices is $\frac{n(n-1)}{2}$	<u>-1)</u>
4.	b) Explain about complete graph and planar graph with an examplea) A graph G has 21 edges, 3 vertices of degree4 and the other vertices are of degree number of vertices in G?	[5M] 3.Find the [5M]
5.	b)Define isomorphism. Explain Isomorphism of graphs with a suitable example a) Suppose a graph has vertices of degree 0, 2, 2, 3 and 9. How many edges does th ?	[5M]. e graph have [5M]
6.	b) Give an example of a graph which is Hamiltonian but not Eulerian and vice versa a) Let G be a 4 – Regular connected planar graph having 16 edges. Find the number regions of G.	[5M] of [5M]
	b) Draw the graph represented by given Adjacency matrix (i) $\begin{bmatrix} 1 & 2 & 0 & 1 \\ 2 & 0 & 3 & 0 \\ 0 & 3 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$ (ii) $\begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 2 \\ 2 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix}$	[5M]
7.	a)Show that in any graph the number of odd degree vertices is even. b)Identify whether the following pairs of graphs are isomorphic or not?	[5M] [5M]
	$V_{1} = V_{2} = V_{1}' = V_{2}' = V_{1}' = V_{2}' = V_{2}' = V_{1}' = V_{2}' = V_{$	
8.	a)Explain about the Rooted tree with an example ?	[5M]

3. a)Explain about the Rooted tree with an example ?[5M]b)Show that the two graphs shown below are isomorphic ?[5M]

9.	a)Find the chromatic polynomial & chromatic number for K _{3,3}	[5M]
	b)Explain graphcoloring and chromatic number give an example	[5M]
10.	Explain Depth- First-Search, Breadth-First-Search Algorithm	[10M]

	Question B	ank	2	020
	SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR			
	Siddharth Nagar, Narayanavanam Road – 517583			
	OUESTION BANK (OBJECTIVE)			
	Subject with Code : DM (18HS0836) Course & Branch: B.'	Геch -	- CSI	E
	Year & sem : II B.Tech II SEM , Regul	ation	:R18	3
	UNIT I			
	MATHEMATICAL LOGIC			
1 In	the statement $P \rightarrow O$ the statement P is called		ſ	1
1. 11	A) Consequent B) Antecedent C) Both A&B D) Sequent		L	1
2. W	That is the negation of the statement "I went to my class yesterday"	ſ	1	
	A) I did not go to my class yesterday B) I was absent from my class yesterday	L	-	
	C) It is not the case that I went to my class yesterday D) All the above			
3. W	hich of the following statement is well formed formula	[]	
	A) $P \to Q \to \land Q$ B) $(P \land Q) \to R$ C) $((Q \land (P \to Q)) \to R)$ D) None			
4. (($P \to Q) \lor \neg (P \to Q)) \land (P \to (P \to Q)) \Leftrightarrow$	[]	
	A) T B) F C) Contingency D) No	ne		
5. P	$\uparrow Q \Leftrightarrow$	[]	
	A) $P \land Q$ B) $\neg (P \lor Q)$ C) $\neg (P \land Q)$ D) $P \lor Q$			
6. Tl	ne Rule CP is also called	[]	
	A) Contradiction of proof B) Conditional proof C) Consistency of premises D) None	e	
7. If	$H_1, H_2,, H_m$ are the premises and their conjunction is identically false then			
T	ne formulas $H_1, H_2,, H_m$ are called			[
	A) Consistent B) Tautology C) Inconsistent D) None			
8. Tl	he α and β are string of formulas. If α and β have at least one variable in			
С	formmon then the sequent $\alpha \xrightarrow{s} \beta$ is	[]	
	A) String of formula B)String C) Sequent D) Axior	n		
9. S	ymbolize the statement "Every apple is red"	[]	
	A) $(\exists x)(A(x) \land R(x))$ B) $(\forall x)(A(x) \land R(x))$			
	C) $(\exists x)(A(x) \rightarrow R(x))$ D) $(\forall x)(A(x) \rightarrow R(x))$			
Discr	ete Mathematics			Page

			Questio	n Bank 2020
10. $\neg(\forall x)A(x)$				[]
A) $(\forall x)A(x)$	B) $\neg(\exists x)A(x)$	C) $(\exists x) \neg A($	x) D) None	
11. A statement is a o	declarative sentence	that is		[]
A) True	B) False	C) True & Fal	lse D) None	
12. A Formula of dis	junctions of minter	ms only is known as		[]
A) DNF	B) CNF	C)PDNF	D)PCNF	
13. $P \lor \neg P =$				[]
A) P	B) T	C)F	D) ~P	
14. Let P: He is old q	He is clever, write	the statement "He is old	d but not clever" in sy	mbolic form
			[]
A) $p \wedge q$	B) $p \wedge \neg q$	C) $\neg p \land \neg q$	D) $\neg(\neg p \land \neg q)$	
15. The proposition <i>j</i>	$p \wedge p$ is equivalent to	0		[]
A) 1	B) <i>p</i>	C)7p	D)None	
16. The connectives	\wedge and \vee are also c	called to eac	h other	[]
A) NAND	B) NOR	C) XOR D) du	ıal	
17. The symbolic for	m of "All men are n	nortal" where M(x):x is	a men H(x):x is morta	ıl
,				[]
A)M(x) H(x)	B)(x)[M(x) $H(x)$ C)($\Im x$)(M(\mathbf{x} $\mathbf{D} \mathbf{H}(\mathbf{x})$ D)nc	one
18. 7(p_ q)=				[]
A) 7pv7q	B) p^7q	C) p⊡ q	D) p_7q	
19. Statement:Navee	n sits between madh	uand mohan is a	[]
A) 3-place pred	dicate B)4-place	predicate C)2-place	predicate D)none	
20. We symbolize "f	or all x" by the symb	ool is		[]
A) $(\forall x)$	B) $(\exists x)$	C)[x] D)∀	
21. In (x)[p(x) \rightarrow Q(x)] the scope of the qu	uantifier is		[]
A)p(x)	B)Q(x) \rightarrow p(x)	C)p(x) \rightarrow Q(x)	D)none	
22. (p → q)⇔				[]
A) pvq B)pv	7q	C)7pvq	D)none	
23. If p is true , q is f	false then p→q is			[]
A) true	B)false	C)true or flase	D)none	
24. p↓q<=>				[]
A)7(pvq)	B)7(p^q)	C)p^q	D)pvq	
Diagnote Mathematic				D 4
	b			Page 1

25. A formula consisting of a product of elementary sum is called []						
A)CNF	B)DNF	C)PD	NF	D)PCNF		
26. 7(pvq) <=>					[]	
A)7p^7q B)) 7pv7q	C) p^q	D)	pvq		
27. A proposition obtain	ned by inserting th	ne word not in th	ne appropriate	e place is called	[]
A) conjunction	B)disjunctio	n C) M	Negation	D)Implica	ation	
28. p,p <u></u> q					[]
A)p	B) q	C)p	_ q	D) 7p		
29. p^(qvr) <=>					[]
A) (pvq) ^(qvr)	B) (pvq) ^	$(p^{r}) (C) (c^{r})$	(p^q) v (p^r) D) (p^q)	v (q^r)
30. The logical truth or a	universal valid s	tatement is calle	ed		[]
A)contingency	B)tautology	C)abs	surdity	D)contradict	ion	
31. Implication I_{11} is					[]
A) p,p_ q=>q	B) p,q=>p^q	C) 7	q,p□ q=>p	D)non	e	
32. New propositions are	e obtained by the	given propositio	on with the he	elp of	[]
A)conjunction	B) connectives	C) compo	und propositi	ion D) no	one	
33. Equivalence E_{18} is					[]
A) p,p_ q=>q	B) p,q=>p^q	C) 7	q,p_ q=>p	D)none		
34. R v(p^7p) <=>					[]
A)p	B) 7p	C) R	D) 7R			
35. p^q =>					[]
A)p B)	Q C) b	oth A and B D)	none			
36. In $(x)[p(x) ^Q(x)]$ the	e scope of the qua	ntifier is			[]
A)p(x) B)	$Q(x) ^p(x)$	$C)p(x) ^Q(x)$) D)	Q(x)		
37. Which of the followi	ng is contrapositi	ive law			[]
A) $p \rightarrow q \equiv \sim q \rightarrow$	$\sim p \ \mathbf{B} p \rightarrow q \equiv$	$\sim q \rightarrow p$ C)	$p \wedge p \equiv p$	D) none		
38. Every Rectangle is a	Square				[]
A)T	B) F	C) both T &	F D)	none		
39. A formula consisting	g of a sum of elem	entary products	is called		[]
A)CNF	B)DNF	C)PD	NF	D)PCNF		
40. p^7p=						[]
A) P	B)T	C)F	D)7P			
Discrete Mathematics						

SIDDHARTH G	ROUP OF IN	STITUTION	S :: PUTTUR				
Siddharth Nagar, Narayanavanam Road – 517583							
OUESTION BANK (OBJECTIVE)							
Subject with Code : DM (18HS08	336)	Co	ourse & Branch: B.T	ech – CSE			
Year & sem : II B.Tech II SEM ,	,		Regul	ation :R18			
		UNIT II					
RELATIO	NS.FUNCTIO	ONS,ALGEB	RAIC STRUCTURI	ES			
1. Let $A = \{1, 2, 3, 4\}$. Let f, g and h h	e functions of	A into R. Wh	ich one of them is				
one- one?				[]			
(A) $f(1) = 3$, $f(2) = 4$, $f(3) = 5$, $f(4) = 1$	(B) = 3 (B) $g($	(1) = 2, g(2) =	4, g(3) = 5, g(4) = 3				
(C) $h(1) = 2$, $h(2) = 4$, $h(3) = 3$, h	(4) = 2 (D) No	ne of above					
2. Let $A = [-1, 1]$. Which of these fund	ctions are bijec	tive on A?		[]			
(A) $f(x) = x^2$ (B) $g(x) = x^3$	(C) h(x	$) = x^4$	(D) None of above				
3. Let $S = \{a, b, c, d\}$. Which of the set	e following se	ts of ordered p	pairs is a function of				
S into S?				[]			
(A) {(a, b), (c, a), (b, d), (d, c), (c,	a)} (B) {(a, c),	(b, c), (d, a),	(c, b), (b, d)				
(C) $\{(a, c), (b, d), (d, b)\}$	(D) {(d,	b), (c, a), (b,	e), a, c)}				
4. If $x_1 = x_2 => f(x_1) = f(x_2)$ then the	e function f is	said to be	[]				
A)injective B)surjective	C)bijective	D)none					
5. If every element of y has the pro-	e-image in x u	nder the functi	ion of f then f is []			
A)one-one B)on-to	C)one-te	o-one D)none	2				
6. If f^{-1} exits for "f" then obviously	rf⁻¹ is also		[]				
A) one-one B) on-to C) on	e-one & on-to	D)none	e				
7. If $f(x)=x^2+1 \& g(x)=x-1$ then for	g(x)=		[]				
A) x^2-2x+2 B) x^2-2x-2	C) x^2 - $2x$	D)none	e				
8. A mapping $I_x::x \rightarrow x$ is called an			[]				
A)Reflexive B)identity	C)inverse	D)none					
9. The algebraic system (S, \circ) is cal	led is the op	peration o is a	associative[]				
A) Group B) Mor	noid C) Sen	ni group	D) Abelian g	group			

Discrete Mathematics

	Question Bank 2020
10. If $(I, +)$ is a Monoid where I is the set of integers and + is the ope	eration of addition
then the identity element is	[]
A) 1 B) 0 C) -1 D) None	
11. Let g be a homomorphism from (X,o) to (Y,*). If $g: X \to Y$ is a	one-to-one and onto
then g is called	[]
A) Bijection B) Isomorphism C) Epimorphism	D) Monomorphism
12. relation is reflexive then there must be a	[]
A) Node B) loop c) verte	ex d) edge
relation which satisfies reflexive, symmetric, & transitive is called as -	- []
A) Equivalence B) compatibility c) partion of set	t d) covering
14.If $A = \{2, 4, 6, 8, 10, 12\}$ then the set builder form is	[]
A) { $2X/X$ is natural number <7 } B){ $2X/X$ is natural n	sumber $< 9 \}$
C) { $2X/X$ is natural number < 5 } D){ $2X/X$ is natural number < 5 }	mber < 17 }
15. If $U = \{1, 2, 3, 4, 5, 6, 7\}$ find the set specified with bit string of 101010	0 is []
A) {1,2,3,4,5,6,7} B) {1,3,,5,} C) {1,2,3,4,} D) {1,2,3}	
16. If $U=\{a,b,c,d,e,f,g,h\}$ find the set specified with bit string of the set	$t A = \{ a,d,f,h \} is []$
A) 10010111 B) 10010101 C) 10101010	D) 10001010
Relation R in a set ",X" is if for every x,y,z \in X and xRy \cap yR	zthenxRz []
A)Antisymmetric B) Transitive C) symmetric	D) none
18. Given $f(x) = x^3$ and $g(x) = x + 2$, for $x \in R$ then $f \circ g$ is	[]
A) $x+2$ B) x^3+2 C) $(x+2)^3$ D) x	-2
19. Let $f: R \to R$ be given by $f(x) = x^3 - 2$. Find f^{-1}	[]
A) $(x+2)^{\frac{1}{3}}$ B) $(x-2)^{\frac{1}{3}}$ C) $x^{3}+2$	D) $x^3 - 3$
20 If the set contains n elements, then the number of subsets is	[]
A) n B) $n+1$ C) 2^n D) 2^{n+1}	
21.If A = $\{1, 3, 4\}$, B = $\{1, 2, 3, 4, 5\}$ then	[]
A) $A = B$ B) B A C)A B D)None	
22. The set of binary digits in tabular form is	[]
A) $\{1, 1\}$ B) $\{0, 1\}$ C) $\{0, 0\}$ D) $\{0, 1, 0\}$	
23. If B = {x / x is a multiple of 4, x is odd}, the set B is	[]
A) Null B) Power set C) Empty set D) Index set	
Discrete Mathematics	Page 1

Page 13

			Question Bank 2020
24. The family of subsets of	any set is called as		[]
A) Proper subset	B) Subset	C) Set of sets	D) Power set
25.The inverse of the identify	y element is the		[]
A)inverse element B)	Identity element C)ic	dempotent element D)	nilpotent element
26. A group with addition bir	nary operation is known	n as	[]
A)Abelian group	B)Groupoid	C)subgroup	D)additive group
27. A group with multiplication	tion binary operation is	s known as	[]
A)Abelian group	B) additive group	C) multiplicative g	roup D)none
28. A group G is said to be_	if the commutative	e law holds []
A)groupoid	B)semigroup C)Abo	elian D)none	
29. In order word (s,0) is a s	emigroup if for any x,y	,z€s then xo(yoz)=	[]
A)(xoy)*z	B)(xoz)oy	C)(xoy)oz D)	x*(y*z)
30. semigrouphomorphism s	satisfies		[]
A) on-to B	b)one-one	C)one-one&on-to	D)none
31. Every homomorphic ima	age of an abelian group	is	[]
A)sub group	B)semigroup	C)abeliangroup	D)none
32. A non-empty subset H o	f a group (G,*) a subgr	oup iff_ where aeH,b	εН []
A)abeH	B)a*beH	C)a*b⁻¹€	D)a ⁻¹ *beH
33. The identity element (if	it exists) of any algebra	aic structure is	[]
A)multiple	B)unique	C)one	D)zero
34 The non zero set of inte	ergers under multiplicat	tion is	[]
A)monoid	B)semigroup C)Group D)none	
35. the order of the identity e	element of a group G is	[]	
A)1	B)2 C)0	D)3	
36. The order of 4 in the grou	up of addition modulo	12 is []	
A)3	B)5 C)7	D)10	
37. The group of all or	ne- one & onto mapp	pings from S to S	there the order of S is n ,
and is called a	group.		[]
A) anabelian B) sy	ymmetric C) alternating	g D) commutative	
38. The order of alternating	group, if the set S has	n elements is []	
A) n	B) n! C) n/2	D) n! /2	
39.Let $A = \{1, 2, 3\}$ then the na	ture of the relation R={	((1,2)(2,1)(1,3)(3,1)) i	s []
Discrete Mathematics			Page 1

A)Symmetr	ic I	B)Assym	metric	C)Refl	exive	D)Trai	nsitive			
40.Let A	={1,2,3}th	en the natu	re of the	relation R=	={(1,1)(2	,2)(3,3)(2,3)} is	S		[]
	B) A)Eq	uivalance	В)Assymmet	tric	C)Refle	exive	D)Trans	sitive		
41. Let A	={2,3,4}th	en the natu	re of the	relation R=	={(2,2)(3	,3)(4,4)}	is			[]
	C) A)Sy	mmetric	В)Assymmet	tric	C)Refle	exive	D)Trans	sitive		
42.Let A:	={1,2,3,4}	then the na	ture of th	e relation H	$R = \{(1,1)\}$	(1,2)(2,2)(2,4)(1,3)(3,3)	} is]]
	D) A)Sy	mmetric	В)Assymmet	tric	C)Refle	exive	D)Trans	sitive		
43.The m	natrix of re	lation R={(a,a)(a,c)	(b,b)(c,c)	is			[[]	
	A)[]]	B)[]	C)[]		D) []
44. The m	natrix of re	lation R={(1,2)(2,1)	(1,3)} is						[]
	A)[]	B) []	C) []		D) []		
45. The n	natrix of re	elation R={	(1,1)(3,1)(2,3)} is						[]
	A)[]	B) []	C) []		D) []		
46The ma	atrix of rel	ation R={(a	a,a)(b,b)(c,c)} is						[]
	A)[]	B)[]	C) []		D) []		

					Question Bank 202	0
					-	
Γ	MU/2	SIDDHAR	TH GROUP O	F INSTITUT	IONS :: PUTTUR	
		Siddh	arth Nagar, Nara	iyanavanam R	Road – 517583	
	SIDDELARTH		- OUESTION B/	- ANK (OBJE(CTIVE)	
	Subject with	Code \cdot DM (1)	RHRU838)		Course & Branch: B Tech - CSE	
	Vear & sem :]	II B.Tech II S	EM .		Regulation :R18	
	1 vui 🤐 50000			UNIT III		
			<u>ELEMENTA</u>	RY COMBIN	NATORICS	
1.	Enumerating r	-permutations v	without repetition	ns $P(n,r)=$	[]	
	A)	B) $\underline{n!}$ C)	<i>n</i> ! D) No:	ne		
_	r!(n-r)!	<i>r</i> !	(n-r)!			
2.	How many 3 d	ligit number ca	n be formed usir	ng the digits 1	,3,4,5,6,8 and 9 []	
	A) 7*6*5	B) 3! C)	$\frac{1!}{3!}$ D) 7^3			
3.	How many 5-c	card hands have	e 2clubs and 3he	arts.	[]	
	A) C(13,2) C(1	12,3) B) C(13,2	2) C(13,3) C) C(52,5) D) None	2	
4.	If a student is t	to answer true (or false question	s and there are	e five questions, the number of ways, he	e can
	answer is []]				
	A) 10 B	B) 16	C) 32	D) 5		
5.	The number of	f two-digit wor	ds, if repetitions	are allowed is	s []	
	A) 576 B	3) 676	C) 52	D) 650		
6.	The four-digit	numbers, that a	can be formed fr	om the digits	1,2,3,4,5,6,7 if there will be no repetitio	ons
	are				[]	
	A) 24 H	B) 6	C)840	D) 120		
7.	The three-digit	t numbers, that	can be formed f	rom the digits	s 1,2,3,4,5 if repetitions are allowed is []
	A) 125 B	3) 120	C) 60	D) 36		
8.	The number of	f ways sitting fi	ve people aroun	d a table is	[]	
0	A) 24 I	B) 120 6 6 .4	C) 312	D)720		
9.	The number of	E ways of drawi	ng 2 cards with	replacement f	rom a deck of 52 cards is []	
10	A)2704 The number of	B) 1320 f ways of drawi	C) 52	D) 2052	nt from a deals of 52 cards is[
10.	Δ)2704	B) 1326	$\frac{110}{C}$ C) 52	D) 265	The from a deck of 52 cards is []	
	11)2704	D) 1320	0) 52	D) 200)2	
iscret	e Mathematics				Pa	ige 1

11. There	are 12 red b	alls and 8 blue ball	s in a box. The n	umber of w	ays of selectir	1g 5 1	red balls and 3 blue
balls	is			[]		
A) 42	2126	B)44352	C) 12118	D) 24352			
12. The n	umber of pos	sitive integer solution	ons of x+y+z=6	is[]			
A) 24	ł	B) 20	C) 10	D)15			
13. The n	umber of two	o digit even number	r is			[]
A) 45	B) 24 C)81	D)50					
14. The the	nree-digit nu	mbers, that can be f	formed from digi	its 1,2,3,4,5,	, if repetitions	are 1	not allowed is
A) 12	5 B) 60 C) 4	5 D) 90					
15. The n	umber of not	n-negative integer s	solutions of x+y+	⊦z=6 is []		
A) 24	B) 20 C) 60	D)28					
16. The n	umber of nor	n-negative integer s	olutions of x+y+	-z=9 is []		
A) 55	B) 45 C) 60	D)72					
17. The n	umber of pos	sitive integer solution	ons of x+y+z<7	is		[]
A) 20	B) 60 C) 12	0 D) 90					
18. The n	umber of per	rmutations of the w	ord SUCCESS is	S		[]
A) 96	50	B) 420	C) 120	D) 840			
19. The n	umber of per	mutations of the w	ord HAPPY is			[]
A) 90	B) 120 C) 6	0 D) 40					
20. The n	umber of per	mutations of the w	ord LAPTOP is			[]
A) 24	0	B) 120	C) 360	D) 4003	0		
21. The n	umber of con	mbinations of five of	objects among ei	ght objects,	if the repetition	ons a	are allowed and
order	is not impor	tant is			[]		
A) 64	5	B) 792	C) 896	D) 962			
22. The n	umber of con	mbinations of three	objects among s	six objects, i	if the repetitio	ns ar	e allowed and order
is not	important is			[]		
A) 56	5	B)96	C) 48	D) 120			
23. There	are two grou	ups, each consists o	f four questions	each. If a st	udent is to an	swer	2 from one group
and 3	from anothe	r group, the number	r of ways that he	e can answei	ris[]		
A) 48	3	B)24	C)72	D) 30			
24. The c	oefficient of	x^5y^2 in the expansion	on of $(x+2y)^7$ is			[]
A) 42	B) 84 C) 12	0 D) 96					
25. The c	oefficient of	x^5y in the expansio	on of $(2x+y)^6$ is			[]
arota Mati	omatica						Dage 1
sciete Mati	iematics						Page 1

						Question	n Ba	nk	2020
	A) 192 B) 123	8 C) 120 D) 14	4						
	26. AUB =62, A	=32, B =42, t	hen $ A \cap B $ =				[]		
	A) 24	B) 1:	5 C)	36	D) 12				
	27. The number of	of integers<500) and divisib	le by 3 or	6 or 7 is		[]	
	A) 214	B) 24	-8 C)	324	D) 194				
	28. The number of	of integers<250) and divisib	le by 7 or	: 11 is		[]		
	A) 54	B) 43	8 C)	74	D) 9				
	29. The number of	of non negative	e integer solu	tions of x	$x_1 + x_2 + x_3 + x_4$	= 8 have	[]	
	A) 165	B)164	4 C)	166	D)163				
	30. The coefficient	nt of x^4y^7 in th	e expansion	of (x – y	$()^{11}$ is		[]	
	A)-330	B) 33	0 C)	- 332	D) 332				
	31. The number of	of non negative	e integer solu	tions of z	$x_1 + x_2 + x_3 = 1$	1 have []	
	A)65	B)74	C) 75	D)78	3				
	32. The coefficient	nt of x^2y^2 in the	ne expansion	of (2x +	$(-3y)^{10}$ is	[]		
	A)1620	B)162	2 C)	1820	D)1520				
	33. If n(A)=20,n((B)=30 and $n(A)$	$A \cap B$)=5 then	n n(AUB)	=		[]	
	A) 40	B) 55	C)	45 D))				
	34.By solving C	(n, 2) = 28,	n =				[]	
	A) 9	B) 8	C)	7	D) 10				
	35. The number	of circular per	mutations of	n object	s taken all n at a	time is	[]	
	A) n – 1	B) (n−1)!	C)	n	D) n!				
	36. If anti clock w	wise & clock w	vise order of	arrangem	ents are not dist	tinct then the n	umber		
	of circular pe	ermutations of	a distinct ite	ms is			[]	
	A) $N - 1$	B) (n − 1)!	C)	$\frac{1}{2}(n-1)$! D) none				
	37. The coefficient	nt of $x^2 y^3 z^2$ in	the expansion	on of (x -	$(+ y + z)^7$ is	[]		
	A)120	B)200	C) 820	D)22	10				
	38. The number of	of ways of divi	ding a set of	size 5 in	to 3 mutually dis	sjoint			
	ordered subse	ets of sizes 2, 1	, and 2 is			[]		
	A) 50	B) 30	C)40	D)35	5				
34.	If $C(n,1) = C($	n, 2) then $n =$	••••			[]		
	A) 2	B) 1	C) 3	D) 4					
4().The coefficient	of $x^2 y^2 z^2$ in th	e expansion	of (x + y	$(z + z)^6$ is	[]		
	A)90	B)100	C) 80	D)10)				

Discrete Mathematics

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR		
Siddharth Nagar, Narayanavanam Road – 517583		
OUESTION BANK (OBJECTIVE)		
Subject with Code : DM (18HS0836) Course & Branch	: B.T	ech – CSE
Year & sem : II B.Tech II SEM , Revealed a sem and the sem and the sem and the sem and the second se	egula	tion :R18
UNIT V		
<u>GRAPH THEORY</u> 1 A regular graph of degree has no lines	1	
A) 0 B) 1 C) 2 D) 3	1	
2 The maximum degree of any vertex in a simple graph with n vertices is	Г	1
A) n B) $n+1$ C) $n-1$ D) $n+2$	L]
3 A graph G has 21 edges 3 vertices of degree 4 and other vertices of degree 3 Find		
the number of vertices in G	ſ	1
	L]
4 The maximum number of edges in a simple graph with n vertices is	Г	1
A) $n(n-1)/2$ B) $(n-1)/2$ C) $n(n+1)/2$ D) $n(n1)$	L]
5 A graph which allows more than one edge to join a pair of vertices is called	Г	1
A) Simple graph B) Multi-graph C) Null graph D) Weighted graph	L]
6 A graph G with no self loops is called a	Г	1
A) Simple graph B) Multi-graph C) Null graph D) Weighted graph	L]
7 A graph having loops but no multiple edges called a	Г	1
A) Simple graph B) Multi-graph C) Pseudo graph D) Weighted graph	L]
8 A simple graph G in which every pair of distinct vertices are adjacent is called	Г	1
A) Simple graph B) Multi-graph C) Null graph D)Complete graph	L]
9 A binary tree T has n leaves. The number of nodes of degree 2 in T is	ſ	1
A) $n-1$ B) n C) $n+1$ D) $2n$	L	1
10 The total number of edges of a complete graph K_{i} is	Г	1
$n(n+1) \qquad n(n-1)$	L	1
a) n b) n^2 c) $\frac{n(n+1)}{2}$ d) $\frac{n(n+1)}{2}$		
11. A graph without edges is called agraph	[]
A) trivial graph B) null graph C)infinite graph D) simple graph		
12. A graph is regular , if the degree of each vertex is	[]
Discrete Mathematics		Pa

Question Bank 2020 B) not same C) always zero D) always one 13. Which is used to find the connected component of graph? ſ 1 B) DFS C) Simple Graph D)Tree 14. A regular graph of degree has no lines. ſ 1 B) 1 C) 2 D) 3 ſ 1 A) Best First Search B) Bid First Search C) Breadth First Search D) Bi First Search 16. A graph G has 21 edges, 3 vertices of degree 4 and other vertices of degree 3. Find the number of vertices in G. []

D) 13

ſ 1

> ſ 1

> > 1

B) n+1 C) n-1 A) n D) n+2 18. Eular's rule is [] A) v+e+r=2B) v-e+r=2 C) ve-r=2 D) v+er=2planar graph has only _____ infinite region(s).] A. ſ B) two A) one C) Three D) four

C) 12

20. If a connected planar graph G has e edges, v vertices and r regions, then A) v+e+r=2B) v-e+r=2 C) ver=2 D) v+er=221.A connected graph that contains an Euler Circuit is called ſ

A) Euler trail B) Semi-Euler graph C) Euler graph D) Hamilton graph

22. A complete bipart	ite graph K _{m, n} 1s plar	har if and only if		L	
A) m>3 or n>3	B) m<3 or n> 3	C) m<=3 or n<=3	D) m>=3 or n>3 b		
23.A graph G=(V,E) i	s called a graph	if its vertices V can be	e partitioned into twosubsets		
V_1 and V_2 such that ea	ch edge of G connec	ets a vertex of V1 to a	vertex of V2].]
A) simple	B) bipartite C	c) complete bipartite	D) multi graph		
24. The chromatic num	ber of completebipation	rtite graph is		[]
A) 1	B) 2	C) 3	D) 0		
25. A complete graph	with n vertices will	haveedges			[]
A) (n-1)(n-2)/2	B) n(n-1)/2	C) (n-2)/2	D) n(n-2)/2		
26. A graph which al	lows more than one	edge to join a pair of v	vertices is called a []	

Discrete Mathematics

A) same

A) BFS

A) 0

15. BFS stands for

A) 10

B) 11

17. The maximum degree of any vertex in a simple graph with n vertices is

B) null graph C) multi graph D) Pseudo graph A) simple graph 27. If G is a connected graph with n vertices and m edges, a spanning tree of g must have edges 1 ſ A) n B) n+1 C) n+3 D) n-1 28.A given connected graph is a Eular graph if and only if all vertices of G are of ſ 1 A) same degree B) even degree C) odd degree D) Different degree 29. An through a graph is a path whose edge list contains each edge of the graph exactly once. ſ 1 A) Eular path B) Eular circuit C) Eular graph D) Eular region 30. An_____is a graph that possesses a Eular circuit. ſ 1 C) Eular graph D) Eular region A) Eular path B) Eular circuit 31. A circuit in a connected graph which includes every vertex of the graph is known as [1 A) Eular B) Universal C) Hamiltonian D) Clique 32. If G is agraph within vertices, then a Hamiltonian cycle in G will contain exactly_____ edges. Γ 1 A) n-1 B) n C) n+1 D) n+2 33. The length of a Hamiltonian path in a connected graph of n vertices is ſ 1 B) n C) n+1 D) n+2 A) n-1 34. A circuit in a connected graph which includes every vertex of the graph is known as 1 ſ B) Universal A) Eular C) Hamiltonian D) Clique 35. The number of colors required to properly color the vertices of every planar graph is ſ 1 A) 2 B) 3 C) 4 D) 5 36. The vertices of a planar graph with less than 30 edges is _____ colorable .[1 C) 3 D) 4 A) 1 **B**) 2 37. A simple connected planar graph with 17 edges and 10 vertices cannot be colorable. 1 **B**) 2 C) 3 A) 1 D) 4 38. The chromatic number of an isolated vertex is Γ 1 B) two C) three D) four A) one 39. The Chromatic number of a graph having atleast one edge is atleast 1 Γ A) one B) two C) three D) four 40. Every graph is 5colorable 1 Γ A) simple B) bipartite C) planar D) Euler

Discrete Mathematics

SIDDHARTH G	GROUP OF	INSTITUTIONS :	: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (OBJECTIVE)

Subject with Code : DM (18HS0836)

Course & Branch: B.Tech – CSE

Year & sem : II B.Tech II SEM ,

Regulation : R18

Page 22

UNIT IV

RECURRENCE RELATIONS

1)The series $1 + x + x^2 +$	=	[]			
$\mathbf{a})\sum x^{r}$ b)	$\sum (-1)x^{r}$ c) $\sum (-a)^{r}x^{r}$ d)none					
2) The co-efficient of $(x^3 - x^3)$	$+x^4+x^5+)^5$ is=	[]			
a)126 b)	127 c)125 d)none					
3) The solution of linear r	recurrence relation ismethods	[]			
a)4 b).	3 c)2 d)none					
4) Iteration method is also	called asmethod	[]			
a) not substitution	b)characteristic root c)step by step d)ne	one				
5) Which method ,the sol	ution is obtained as the sum of two parts	[]			
a)substitution	b)characteristic root c)step by step d)none					
6) When $fn = 0$, then the equation is						
a)homogeneous	b)non-homogeneous c)none					
7) If the characteristic eq	uation has 2,1 roots, then the solution is	[]			
a) $a_n = b_1 2^n + b_2 (-1)$	b^{n} b) $a_{n=}(b_{1}+2b_{2})(-1)^{n}$ c) $(2b_{1}+(-1)b_{2})r^{n}$	d)noi	ne			
8) The solution of linear r	non-homogeneous equation is=	[]			
$a)a_n = a_n^{(h)} + a_n^{(p)}$	b) $a_{n=}A_0+A_1n+A_2n^2$ c) Ab^n d)none					
9)is called a particula	ar solution	[]			
a)a _n ^(h) b)	$a_n^{(p)}$ c) $a_n = a_n^{(h)} + a_n^{(p)}$ d)none					
10) $a_n = 2a_{n-1}$ is a homogeneous linear recurrence relation of order						
Discrete Mathematics						

a)2	b)3	c)1	d)none			
11) If $f(n)=2^n$ and 2 is	the root of the	characteristic	equation,thenth	etrial solution is	[]
a) $A2^{n}n^{2}$	b) $A2^2n^2$	$c)A^22$	$2^2 n^2$	d)none		
12) The associated line	ear homogeneo	us recurrence r	elation solutior	n is=	[]
a)a _n ^(h)	b)a _n ^(p)	C) a _N		D)none		
13) $\sum a_n x^n$ is equal to					[]
a) $a_0 + a_1 x + a_2 x^2$	+	b) $a_0x+a_1x^2+a_1x^2+a_2x^2+$	$_{2}x^{3}+$ C) $a_{0}+$	$a_1 X D$)none		
14) A recurrence relation	ion is a formula	that relates fo	r any integer		[]
a)n≥1	b)n≤1	c)n=0	d)none			
15) If the solution isa _n	$=(b_1+b_2n+b_3n^2)$	2^{n} , then the va	alue of "r" is		[]
a)2	b)3	c)1	d)none			
16) If f(n) is constant t	then the trial sol	lution is			[]
a)Ab ⁿ	b)A	c)Ab ⁿ s ⁿ	d)none	2		
17) Solving recurrence	e relation for	-types			[]
a)2	b)3	c)1	d)none			
18) If a _k =2a _{k-1} +k, for a	ll k $\geq 2, a_1 = 1$, the	n the value of a	a ₃ =		[]
a)12	b)11	c)4	d)none			
19) If a_{n+2} -4 a_{n+1} +4 a_n =2	2 ⁿ ,then the equa	tion is			[]
a)homogeneou	ıs b)non-	homogeneous	c)characteristi	c d)no	ne	
20) Trail solution of a	$n^{(p)}$ is A ₀ +A ₁ n+A	A_2n^2 ++ A_mn	^m , then the degre	ee is	[]
a)2	b)m	c)n	d)none			
21. The generating fu	unction of 1 is				[]	
A)	B)	C)	D)	-		
22. The generating f	unction of 3 ⁿ is			[]	
A)	B)	C)	D)			
23. The generating f	unction of n is			[]
Discrete Mathematics						Page 23

				Question	Bank	2020
A)	B)	C)	D)			
24. The generating	function of 1+n	ı is		[]	
A)	B)	C)	D)			
25. The generating	function of the	sequence 1, -2	2,4,-8,16is		[]	
A)	B)	C)	D)			
26. The exponential	generating fun	ction of the seq	uence 1,1,1,1is		[]
A) e^{x}	B) e ^{-x}	C) e^{2x}	$D)e^{-2x}$			
27. The exponential	l generating fur	nction of the sec	quence 1,0 ,-1, 0 , 1 ,0	, -1 ,0 , 1,	.is	
A) Cos x	B) sinz	x C) cos	2x D) e^{2x} .			
28. $1+x+x^2+x^3+\cdots$	=				[]
A) $\frac{1}{1+x}$	$B)\frac{1}{1+x^2}$	C) $\frac{1}{(1-x)^2}$	D) $\frac{1}{(1-x)}$			
29. the order of RR	$a_{n+1} - 2a_n = 2$ is				[]	
A) 2	B) 1	C) 3	D) 4			
30. The order of a_{n-2}	$+ a_{n-1} + a_n$ is				[]	
A) 1	B) 2	C)3	D)4			

Prepared by G K MUNI LAKSHMI